MATH 3060 Tutorial 8

Chan Ki Fung

November 2, 2022

- 1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ with Df non-degenerate everywhere.
 - (a) Does f always send open sets to open sets?
 - (b) Does f always send closed sets to closed sets?
- 2. Thinking $\mathbb{R}^{n \times n}$ as the set of $n \times n$ matrices. Let $T : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ be $T(A) = A^2$, show that DT is non-degenerate at I. Hence show that there exists a $\delta > 0$, s.t. for $||B|| < \delta$, I + B has a square root.
- 3. In the setting of theorem 3.10 and proposition 3.11 in lecture 15, we define

$$X = \{\phi \in C[t_0 - a', t_0 + a'] : \phi(t_0) = x_0, \phi(t) \in [x_0 - b, x_0 + b]\}$$

and a function $T: (X, d_{\infty}) \to (X, d_{\infty})$

$$(T\phi)(t) \coloneqq x_0 + \int_{t_0}^t f(t,\phi(t)))dt.$$

(a) Show that

$$d_{\infty}(T^{k}(\phi), T^{k}(\psi)) \leq \frac{L^{k}a^{\prime k}}{k!} d_{\infty}(\phi, \psi)$$

(b) Show that as long as a'M < b, T has a unique fixed point.